Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements.

Auteur(s) :
Liu RH., Wolfe KL.
Date :
Oct, 2007
Source(s) :
Journal of agricultural and food chemistry. #55:22 p8896-8907
Adresse :
Department of Food Science, Cornell University, Ithaca, New York 14853-7201, USA.

Sommaire de l'article

A cellular antioxidant activity (CAA) assay for quantifying the antioxidant activity of phytochemicals, food extracts, and dietary supplements has been developed. Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF). The method measures the ability of compounds to prevent the formation of DCF by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells. The decrease in cellular fluorescence when compared to the control cells indicates the antioxidant capacity of the compounds. The antioxidant activities of selected phytochemicals and fruit extracts were evaluated using the CAA assay, and the results were expressed in micromoles of quercetin equivalents per 100 micromol of phytochemical or micromoles of quercetin equivalents per 100 g of fresh fruit. Quercetin had the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the pure compounds tested. Among the selected fruits tested, blueberry had the highest CAA value, followed by cranberry > apple = red grape > green grape. The CAA assay is a more biologically relevant method than the popular chemistry antioxidant activity assays because it accounts for some aspects of uptake, metabolism, and location of antioxidant

Source : Pubmed
Retour