In vitro corrosion behaviour and osteoblast response of thermally oxidised ti6al4v alloy.

Auteur(s) :
Martinez ME., Garcia-alonso MC., Gil-garay E., Gonzalez-cabrero J., Gonzalez-carrasco JL., Munuera L., Saldana L., Valles G.
Date :
Jan, 2003
Source(s) :
Food chemistry. #24:1 p19-26
Adresse :
Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, Avda Gregorio del Amo 8, Madrid 28040, Spain. [email protected]

Sommaire de l'article

« In this work, the influence of thermal oxidation treatments of Ti6Al4V at 500 degrees C and 700 degrees C for 1 h on the in vitro corrosion behaviour and osteoblast response is studied. The potential of these treatments, aimed to improve the wear surface performance as biomaterial, relies in the formation of an outer «  »ceramic » » layer of rutile. The corrosion behaviour was evaluated in simulated human fluids by electrochemical impedance spectroscopy and anodic polarisation tests. The effect of these thermal oxidation treatments on osteoblastic behaviour was studied in primary cultures of human osteoblastic cells. Results show that thermal oxidation treatments do not decrease the high in vitro corrosion resistance of the Ti6Al4V alloy. Osteoblast adhesion studies indicate that thermal oxidation treatments do not impair the material biocompatibility. Moreover, the thermal oxidation at 700 degrees C enhances the in vitro osteoblastic cell attachment compared to the thermal oxidation at 500 degrees C. Copyright 2002 Elsevier Science Ltd. »

Source : Pubmed
Retour