Polyphenols in chocolate: is there a contribution to human health?

Auteur(s) :
Anklam E., Wollgast J.
Date :
Déc, 1999
Source(s) :
FOOD RESEARCH INTERNATIONAL. #33:6 p449-459
Adresse :
"WOLLGAST J,COMMISS EUROPEAN COMMUNITIES,JOINT RES CTR DG INST HLTH & CONSUMER PROTECT FOOD PROD & CONSUMER;I-21020 ISPRA,VA [email protected] "

Sommaire de l'article

Recently, polyphenols have gained much more attention, owing to their antioxidant capacity (free radical scavenging and metal chelating) and their possible beneficial implications in human health, such as in the treatment and prevention of cancer, cardiovascular disease, and other pathologies. Cocoa is rich in polyphenols particularly in catechins (flavan-3-ols) and procyanidins. Polyphenol contents of cocoa products such as dark chocolate, milk chocolate and cocoa powder have been published only recently. However, the data vary remarkably due to the quantity of cocoa liquor used in the recipe of the cocoa products but also due to the analytical procedure employed. For example, results obtained by a colourimetric method were 5-7 times higher for the same type of product than results obtained by high performance liquid chromatography (HPLC). In 1994, the per head consumption of chocolate and chocolate confectionery in the European Union ranged from 1.3 kg/year in Portugal to 8.8 kg/year in Germany. In general, consumers in the Northern countries consume on average more than people in the South. Thus, chocolate can be seen as a relevant source for phenolic antioxidants for some European population. However, this alone does not imply, that chocolate could be beneficial to human health. Some epidemiological evidence suggests a beneficial effect to human health by following a polyphenol-rich diet, namely rich in fruits and vegetables and to a less obvious extent an intake of tea and wine having a similar polyphenol composition as cocoa. In many experiments cellular targets have been identified and molecular mechanisms of disease prevention proposed, in particular for the prevention of cancer and cardiovascular diseases as well as for alleviating the response to inflammation reactions. However, it has to be demonstrated, whether polyphenols exert these effects in vivo. One pre-requisite is that the polyphenols are absorbed from the diet. For monomeric flavonoids such as the catechins, there is increasing evidence for their absorption. For complex phenols and tannins (procyanidins) these questions have to be addressed for the future. Some indication for the absorption of procyanidins derive from studies with the human colon cancer cell line Caco-2, believed to be a valuable model for passive intestinal absorption as proposed for polyphenols. However, it has to be clarified which concentration is effective and what concentrations can be expected from food intake. Another open question is related to polyphenol metabolism. For example, much effort has been invested to show antioxidative effects of free unbound polyphenols, especially of catechins and the flavonol quercetin. However, only a very small part can be found in plasma in the free form but conjugated or even metabolised to several phenolic acids and other ring scission products. From the papers reviewed, it is as yet to early to give an answer to the question, whether chocolate and/or other sources rich in catechins and procyanidins are beneficial to human health. Even though some data are promising and justify further research in the field, it has to be shown in future, whether the intake of these functional compounds and/or their sources is related to measurable effects on human health and/or the development of diseases.

Source : Pubmed
Retour