Seasonal changes in markers of oxidative damage to lipids and dna; correlations with seasonal variation in diet.

Auteur(s) :
Horska A., Dusinska M., Raslova K., Smolkova B., McNeill GM., Blazicek P., Spustova V.
Date :
Juil, 2004
Source(s) :
MUTATION RESEARCH. #551:1-2 p135-44
Adresse :
Institute of Preventive and Clinical Medicine, Slovak Medical University, Limbova 12, Bratislava 83303, Slovak Republic.

Sommaire de l'article

We have addressed the question whether the relatively high incidence of cardiovascular disease and certain cancers in countries of central/eastern Europe might be associated with nutritional imbalance, in particular a lack of fresh fruit and vegetables in the diet in winter months. Nutritional parameters and markers of oxidative stress were studied in three Slovak population groups: 46 survivors of myocardial infarction (MI group) and 48 healthy, normolipidemic subjects (NL), living in or near Bratislava; and 70 rural controls (RC group) living a more traditional life style in a country town. Data were collected in February/March and September/October of two consecutive years, representing times of minimum and maximum local availability of fresh fruits and vegetables. Oxidative stress was monitored using two biomarkers; plasma malondialdehyde (MDA, a product of lipid peroxidation), and oxidation of lymphocyte DNA. Dietary antioxidants, folic acid, homocysteine, total antioxidant status (FRAP) and uric acid were measured in plasma. Food frequency questionnaires were administered. Vegetable consumption in summer/autumn was twice as high as in winter/spring. DNA damage did not vary consistently across the seasons. Mean plasma MDA levels for the MI and NL groups showed a clear pattern, with high levels in winter/spring and low levels in summer/autumn. Folic acid showed a reciprocal pattern, similar to the pattern of vegetable consumption. The RC group had the smallest seasonal variations in vegetable consumption, folic acid levels, and MDA. High winter MDA levels are seen in those individuals with relatively low folic acid; they never occur in subjects with high plasma folic acid, implying that folic acid might directly protect against lipid oxidation. This study illustrates the value of the molecular epidemiological approach, while emphasising the need for well characterised population groups and valid biomarkers.

Source : Pubmed